JACOB CARDINAL TREMBLAY



# QUANTUM ENTANGLEMENT





# SMALL

Quantum Mechanical properties apply to objects which are extremely small, typically atoms or smaller.

# SPIN

Quantum particals can have a "spin" which describes their state. They can be spin up, or spin down.

# PARTICLE

Normally, two particles provide information about their state independent of the other (Wilczek, 1).

### ENTANGLE

However, entangled particles provide knowledge about the other particle which means that "entangled particles behave together as a system in ways that cannot be explained using classical logic" (Fisher, 1).







# STATE

When 1 particle is measured in a certain state, we know the state of the other particle.

## DISTANCE

This even occurs when the state is measured across vast distances!



### COMPUTE

This idea is used in quantum computers to help solve some of the world's hardest problems! (Fang et al. 2003)

#### References:

•

Fang, A., & Chang, Y. C. (2003). Entanglement and correlation for identical particles in quantum computing. Elsevier, 311(6), 443-458. doi:10.1016/S0375-9601(03)00546-2

Quanta Magazine, & Wilczek, F. (2016, April 28). Entanglement Made Simple. Quanta Magazine.https://www.quantamagazine.org/entanglement-made-simple-20160428/

