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1 Introduction

The aim of this lab is to understand the working principle behind a radio astronomical

receiver, more specifically the superheterodyne receiver system and to understand

how a radio interferometer works. The lab is subdivided in two parts. The first part

deals with studying different properties of the components of a superheterodyne

receiver. After studying the individual components, the receiver is used to catch

signals from a signal generator generating a spectral line at a fixed frequency which

will allow to study the response of the receiver system. The second part of the

experiment involves working with a twin radio interferometer. The setup is used

to observe the Sun and make an interference image of it and further deduce some

results from this output.

2 Basics of Radio Interferometry

This introduction to the world of radio astronomy is our very own summary and

interpretation of the topics mentioned in the 2022 lab manual by Jürgen Kerp, along

with other sources which are cited. Please view the information in this report as a

concise version of the material, focused around the specific tasks performed. For a

full understanding, please seek information from our cited sources.

2.1 Setting Up a Radio-Astronomical Receiver

In this section, several important terms for the experiment are defined. These are

terms which have been indicated in bold in the lab script [24] and are once again

bolded in this text before they are defined.

Starting with the absolute basics, an electrical signal is either a voltage or current

which can relay information in a circuit. This electrical signal will contain an ampli-
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tude, a time period and a frequency (number of cycles per second) [22]. In the case

of this lab, electromagnetic signals collected by a radio telescope will be converted

to an electrical signal.

Huge amplifications of such signals are necessary which is why a superheterodyne

receiver is generally used. This experiment will make use of such a receiver and

allow the students to familiarize themselves with the active and passive components

of a receiver. A working receiver will be set set with down-conversion of the high-

frequency signal to an intermediate frequency.

This down-conversion is when a signal is converted to a lower frequency at a lower

sampling rate to simplify further radio stages. This process should preserve all the

information of the original signal [7]. An intermediate frequency (IF) is a frequency

between the baseband frequency and the carrier frequency. Using an IF allows the

design of a receiver where the circuitry can be designed for a single unchanging fre-

quency band [23].

This signal is then detected by a backend, where the alternating signals are trans-

formed into a form useful for science. The backend refers to the instruments which

are not directly attached to the telescope. This term can be used for many parts of

an instrument, for example the correlator in a radio interferometer. The frontend

will perform operations which make the signal easier to transmit, and the backend

will carry the rest of the processing in a more protected environment [13].

In the case of continuum observations, the backend provides a power signal over a

bandwidth, which is a continuous band of frequencies, along with polarization pa-

rameters.

There is also a spectroscopy portion to this lab, where the frequency dependence of

the signal is analysed with high spectral resolution. This spectral resolution is

defined as the ability of a sensor to define fine wavelength intervals [5]. Therefore in

this context is means that the frequency spectrum will have fine intervals that will

allow for a detailed investigation of the frequency spectrum.

In the experiment itself, a backend which delivers a signal proportional to the power

will be used as well as a spectrum analyzer to study frequency dependence.
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Amplification of the signal is done using the superheterodyne method which is a

step-wise amplification of the signal at multiple frequencies. The original signal is

converted to a lower frequency with the use of a mixer. The general idea is to use a

superheterodyne receiver. This is a type of radio receiver which converts received

a radio signal into an intermediate frequency (IF) through the use of a mixer. These

IF signals can then be processed more easily than the original ones [24].

Each of the receiver component can be characterized by a gain G. Gain is an impor-

tant parameter in radio astronomy as it is a performance parameter which combined

the antenna’s directivity along with the radiation efficiency. It is essentially the

maximum radiation intensity produced by the antenna compared to that given by a

lossless isotropic radiator supplied with the same level of power [20]. It has units of

dB or dBm. Passive components will have a G ¡ 1 and the total amplification of a

receiver is given by the product of all the individual gains (sum of the gains in dB).

Another important parameter of a receiver is the Noise Temperature. This value

is what would be measured if the receiver did not have any input signal which will

therefore define the detection limit [24]. This value can be calculated for every compo-

nent however the first component will be the most important as further components

will have progressively smaller contributions. In practice, it is best to determine the

receiver using a hot-cold calibration where a resistor at room temperature is com-

pared to one cooled in liquid nitrogen. This process will be further explained in the

section where such a calibration takes place. Finally, the limiting sensitivity is not

only given by the noise temperature, but also by variations in the gain and other

instabilities.

2.2 Understanding a Radio Interferometer

Radio Telescopes are capable of observing astronomical sources from the ground as

radio waves are not blocked by the atmosphere. However, radio astronomy also has

a finite window for getting the optimum results. For example, high frequency radio

observations suffer from absorption in the atmosphere due to the water vapour con-
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tent of this layer. On the other hand, low frequency radiation gets scatter by the

ionosphere producing signal fluctuations known as “scintillations’. Above a certain

wavelength, the radio waves get reflected back from the atmosphere. However, for

wavelengths between 1-20cm, the atmospheric attenuation is not very crucial and

using robust calibration algorithms can help take care of the the further signal pro-

cessing [24].

An antenna is the most basic component of a radio telescope and its most critical

property is the sensitivity. It depends on the aperture efficiency of the telescope

and the coupling of the antenna with the incoming radio waves. Sensitivity of a radio

telescope gives a threshold for detecting astronomical signals with the instrument.

As an example, for a continuum observation with the Meerkat array in the L-band,

the sensitivity is 3.1 µJy/beam [Refer :Meerkat Sensitivity Calculator]. This means

that the array can observe sources as faint as 3.1 µJy which is really unprecedented

capability that has been achieved today. The sensitivity also depends on the system

temperature and inversely on the observing bandwidth and integration. This relation

is expressed as the famous ’radiometer equation’ which is given as :

∆T =
Tsys√
∆ν.τ

(1)

where for a radio interferometer, Tsys is the system temperature, ∆ν is the correlator

bandwidth and τ is the integration time.

Radio Telescopes have can be built in various different structural aspects. Low

frequency radio telescopes are often an array of dipole antennas like the LOFAR

while high frequency observations need parabolic dish telescopes like the Green Bank

100m Telescope in the US. Thus, wavelength of operation has a crucial role to play

while designing radio telescopes. For centimeter wavalenghts, the surface precision is

not a concern but for millimeter wavelengths, the parabolic dishes should have high

precision,i.e, very little surface variations. Hence, we see that high frequency dishes

https://apps.sarao.ac.za/calculators/continuum
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have a smaller diameter as it is easier to achieve the required amount of precision on

small surfaces.

The angular resolution of a radio telescope is its property to resolve sources on

the smallest angular scales which depends on the wavelength of observation and

the diameter of the telescope for a single dish telescope given as:

θ = 1.22
λ

D
(2)

In case of a radio interferometer, the resolution depends on the largest spatial sep-

aration between any two dishes in the array also known as the baseline B and is

given by:

θ = 1.22
λ

B
(3)

Quantitatively, it is the diffraction limit of a interferometer which gives the small-

est recoverable angular scales. Larger the baselines give closely spaced fringes and

hence better angular resolution. On the other hand, the antennas with the least

separation or the shortest baseline give the maximum recoverable angular scale

in the sky. It is very important in radio interferometry to recover large scales but

also give a good resolution. Therefore, observations are often carried out where the

array can be subdivided such that an array selection with the largest baseline gives

the resolution while the other half of the array consists of closely spaced antennas to

give a better sense of the largest scale of the target.

Any radio telescope records the brightness distribution of the source which is

defined as the power spectrum it generates as from the electric field distribution at

the antenna aperture. In an interferometer, a pair of two radio telescopes produces

a visibility which is a correlation of the brightness distribution recorded at the two

radio telescopes. Technically speaking, the two dishes generate a voltage which are

cross-correlated giving the visibility. Mathematically, visibility is a fourier transform

of the far-field onto the aperture. Hence, getting visibilities is producing fourier

components using complext fourier transform algorithms. One such algorithm is the

Fast Fourier Transform which calculates a discrete fourier transform since the
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signal is digital, but with reduced computational effort.

The visibilities that we get are discrete points on the spatial scale. The way to

increase these points is to add more antennas to the interferometer and hence increase

the correlations and the visibility. However, another clever method to fill up the so

called uv-plane in interferometry is doing aperture synthesis which uses the earth’s

rotation to fill-up the voids between the visibilities and produce radio images. Once

the raw data is in, making a radio image from it is another difficult task. Algorithms

like CLEAN are used to improve the image quality and self-calibration is performed

by dedicated softwares like CASA.

2.3 Equatorial Coordinate System

There have been used several coordinate systems used in Astronomy to specify the

location of celestial sources. Briefly, the coordinate systems can be relatively specified

into three systems. The topocentric system considers the observers location as the

origin, the geocentric system considers the Earth’s center as the origin while the

heliocentric system considers the Sun’s center as the origin. The most commonly

used coordinate system used today is the equatorial coordinate system which is

geocentric. A representation of this system can be seen in Fig. 1.
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Figure 1: The Equatorial Coordinate System (credits: [24])

In the above coordinate system, let ϕ be the latitude of the observer. Then the

zenith Z is the point directly overhead the observer which forms the pole of the

horizon. Earth is the center of this system with an imaginary celestial sphere arounf

it. The celestial equator is an imaginary line extending from the Earth’s equator

onto the celestial sphere and the point P is the pole of the celestial equator. The

Right Ascension and Declination are analogous to the longitude and latitude.

The Right Ascension α] sweeps from the right to left and is usually measured in

units of hours, minutes and seconds. The Declination δ is the elevation angle in

degrees measured from the equator, with 90◦ being the North Pole and -90◦ is the

South Pole. A meridian is a great semicircle passing through the celestial pole. The

angle between the meridian of the celestial object and observer is called the Hour

Angle. It is measured westwards from the observer’s meridian tracing from 0h to

24h.
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2.4 Radio emission from the Sun

Sun is the brightest radio source in the sky and hence, it is also an unwanted white

noise which can deteriorate observations of other faint radio sources. It is a thermal

source of radiation meaning its a blackbody following the Planck’s Law. It emits

most of its radio radiation thermally at high frequencies but also shows a fraction of

synchrotron emission at the lower frequencies.

2.5 Questions for Part II (Interferometry)

Exercise 2.1 Which property of the telescope can affect angular resolution

and image quality?

As it can be seen from Eqn. 2, the angular resolution is inversely dependant on the

telescope diameter. Therefore, increasing the dish diameter can improve the reso-

lution. However, if the angular resolution were to be fixed, the resolution will get

poorer for low frequency observations while it will be bad for high frequency obser-

vations if the dish surface variations are high. Thus, these effects on the angular

resolution have a direct impact on the image quality.

Exercise 2.2 What is the difference between the wavelengths of operation

at radio telescopes with small and big parabolic surfaces?

High operating frequencies require less surface accuracy compared to low frequency

observations. Moreover, from the equation for angular resolution it can be seen that,

smaller dishes are more suited for high frequency observations while we need big

dishes for low frequency observations.

Exercise 2.3 How can you prove the equality of the altitude of the north

celestial pole and the latitude of the observer?
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Observer Latitude: The observer’s latitude is the angle that the celestial equator

makes with its zenith.

Altitude of North Celestial Pole : Angle of the north celestial pole above the ob-

server’s horizon.

This problem can be better solved using a visual representation as shown in Fig. 2.

Figure 2: Representation of coordinate system as seen by the observer

Let Z be the zenith of the observer O, P be the celestial pole and E the celestial

equator respectively. Therefore, by definition we have:

∠ EOZ = θ : Observer’s Latitude

∠ POD = ϕ : Altitude of North Celestial Pole

The angle between the celestial equator and north celestial pole is, ∠ EOP = 90◦.

Hence, we can carry out a simple geometry exercise as follows:

∠ ZOP = 90 - θ

which implies,

∠ POD = 90 - (90-θ)

Therefore, we get θ = ϕ, hence the proof that the altitude of the north celestial pole

is equal to the latitude of the observer.

Exercise 2.4 How many full moons can be laid side-by-side within Polaris’

circular path about the north celestial pole?

The pole star is at a distance of about 60’ from the north celestial pole giving the
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diameter of its circular path as 120’. The angular size of the moon is about 30’.

Therefore, we can fit 120’/30’, i.e, four full moons within the Polaris’ circular path

around the north celestial pole.

Exercise 2.5 Solar atmosphere has three main layers: the photosphere,

the chromosphere and the corona. What kind of emission does each layer

emit? Which layer(s) does(do) emit in radio wavelengths?

1) Photosphere: The photosphere forms the surface from which we get visible light.

The temperature of this layer varies between 4500K-6000K [reference]. There is no

radio emission seen in this layer as it is dominated by high energy thermal emission.

2) Chromosphere: This layer lies between the photosphere and the corona. This

layer is well known for Hα emission lines and UV radiation. The layer also exhibits

radiation at millimeter wavelengths into the radio through thermal as well as non-

thermal processes to some extent [12].

3) Corona: This is the outermost layer of the Sun which contains ionized plasma

and has a temperature reaching upto ∼ 2.3 million kelvin [reference]. It emits in

UV, X-ray and radio. The radio emission is dominated by thermal and non-thermal

processes [12].

Exercise 2.6 What is the origin of the radio emission of the corona

The radio emission in the solar corona is dominated by thermal and non-thermal

processes. There are a total four emission mechanisms that dominate this emission

: free-free emission, gyromagnetic emission, plasma emission and electron-cyclotron

emission [18].

Exercise 2.7 Plot the flux density vs. frequency for three different sources

(e.g. 1000, 4000, 8000) and place the solar emission profile on it. Does

the Sun have a perfect black body radiation?

A Blackbody emission follows the Planck’s Law which is given as :

B(ν, T ) =
2hν3

c2
1

e
hν

kBT − 1
(4)

Using this relation, we plotted the energy density B(ν,T) as a function of frequency

https://www.nasa.gov/mission_pages/iris/multimedia/layerzoo.html
https://www.nature.com/articles/151728a0
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for different temperatures and for the temperature of the Sun (Tsun = 5800K). The

results have been shown in Fig. 3.

Figure 3: Energy Density Vs Frequency for a Planck Spectrum

From this figure, it can be seen that the Sun follows the Planck’s law very well and

can be approximated to be a very good blackbody. However, there can be deviations

from this spectrum due to the temperature variations in the Sun.

Exercise 2.8 What is the difference between the radio emission of the

active Sun and the quiet Sun? Locate both in the plot. The radio emission

shows significant variation during the active and quiet phases. The Sun has a 11year

solar cycle over which its magnetic field is completely flipped [reference]. The start

and end of this cycle shows minimum solar activity and is termed as the Quiet Sun.

During this time, a very few sunspots are visible on the Sun. On the other hand, the

period when the solar activity peaks is the Active Sun. The difference between the

active and quite Sun radio emission can be clearly seen in its spectrum as shown in

Fig. 4. For comparison, this plot shows the spectrum during these two phases at a

https://spaceplace.nasa.gov/solar-cycles/en/
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frequency of 2.6GHz and we can see that there’s a difference of an order of magnitude

in the flux density between the two phases. The increased amount of emission during

the active phase can be attributed to hugh number of solar flares produced during

the period.

Exercise 2.9 In which case can we see the Sun bigger in size? Observing

the photosphere or the corona?

The Sun will appear bigger when observing the corona as compared to observing the

photosphere. The photosphere is a much thin layer and is confined to optical emission

whereas the corona stretches out millions of kilometers from the solar surface and is

dominated by radio emission. Hence, the radio Sun is bigger than the optical Sun.

This can be also proved during a total eclipse where, the dip produced in the flux will

stay for a longer time during radio observations as compared to optical observations.

This dip in the flux will start before the optical eclipse starts and will end at a

delayed time after the visible eclipse is over.

Figure 4: Radio spectrum of the Sun during the active and quiet periods (credits:

[19])
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3 Setting up a Radio Astronomical Receiver

3.1 Measuring Individual Components

Before heading into the exercises, it is important to define some of the individual

components with which we will be working. Definitions are based from the informa-

tion in the lab manual [24].

An amplifier is a device which amplifies an input power signal. Using an electronic

power supply, it then increases the amplitude, and the gain of such a device will then

provide information about the amount of amplification which is more than one.

A filter is a device used to eliminated unwanted frequencies or bands of a signal.

A mixer is a device which can combine multiple radio signals into a single output

signal.

3.1.1 Exercise 1.1

The first exercise was to determine the gain of three amplifiers (HF-V1, HF-V2, ZF-VI),

however during the experiment only two high frequency amplifiers were available

(HF-V1 and HF-V2) and therefore these were the only amplifiers used in the exper-

iment. The properties of these amplifiers can be found in Tab. 1. The properties

of amplifier HF-V1 were first measured and the properties of HF-V2 were measured

after. In order to measure these properties, the first step was to connect the signal

generator to the input of the amplifier and then to the power meter to the output.

The amplifier was connected to a power supply (of ±15 V) and the input frequency

was set to 2.3 GHz. For HF-V1, the amplitude (input power) was set to 20 dBm

and was decreased by steps of 2 dBm until -30 dBm. The same was done for HF-V2,

however here the amplitude was decreased until -40 dBm instead of -30 dBm so that

the behaviour of the amplifier was better resolved. An uncertainty for the values of

amplitude of ±0.10 dBm was then applied to each measurement in order to account



A7; S262: Setting up a Radio-Astronomical Receiver/ Setting up a Radio
Interferometer 17

for possible human error on the reading. An important thing to note is that in order

to acquire a reading on the power meter, it was important to gradually decrease the

power meter range accordingly. The output power would then be the result of the

range and the reading added together. The amplifiers were operated in linear regime

in order to obtain a pure amplification.

Amplifier Gain [dB] Bandwidth [GHz]
1 dB-Compression

Point [dBm]
Temperature [K] Function

HF-V1 11.508 ± 0.159 ≈ 2-3 6 150 HF-pre-amplifier

HF-V2 28.479 ± 0.634 2-4 13 400 HF-amplifier

Table 1: Parameters of the two amplifiers used during this experiment. The only

measured values are the gain, the other values were provided by the lab manual [24].

No uncertainties were provided on the numbers given by the lab manual, which is

why there are only uncertainties on the measured gain values.

In order to acquire the values for gain, the input power had to be plotted against the

output power. The Python programming language [27] along with the Matplotlib

package [3] was used to plot these values and is also used throughout the report

to make all other plots and non-trivial calculations. This resulted in Fig. 5 and

Fig. 6, where a linear regression was then made in the linear regime using the

Numpy.polyfit Python package [9]. For HF-V1 this meant selecting points with

indexes 14 to 22, whereas for HF-V2 points with indexes of 19 to 31 were selected.

This linear regression was then performed (using the equation of a straight line:

y = mx+ b) which resulted in a value for slope (m) and y-intercept (b). The values

for the fit parameters are the respective slope and y-intercept of each amplifier. The

value for the y-intercept is our value for the gain and is shown in Tab. 1.

Values for the slope were calculated to be 0.727± 0.010 for HF-V1 and 0.948± 0.021

for HF-V2. For an ideal gain, where we are completely in the linear regime, the slope

would be of exactly 1. One can therefore see that HF-V1 is relatively off however

HF-V2 is quite close to the ideal gain.
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Figure 5: Output power vs. input power

for HF-V1 with a linear fit applied to the

linear regime. Uncertainties of ±0.1 dBm

on all points are present, however they are

too small to be visible.

Figure 6: Output power vs. input power

for HF-V2 with a linear fit applied to the

linear regime. Uncertainties of ±0.1 dBm

on all points are present, however they are

too small to be visible.

3.1.2 Exercise 1.2

The second task for this part of the lab was to measure the input and output power

of the filter at different frequencies around the central frequency. This is done with

the overall goal of investigating the most important parameters of filters, namely,

central frequency, bandwidth, adjacent-band rejection and insertion loss. In order

to do this, a similar setup to the previous exercise was set, however this time the

amplifier was replaced with the appropriate filter. For this experiment, two different

filters were provided. Filter HF-F1 was the high-frequency filter had a theoretical

central frequency of 2.3 GHz with an uncertainty of ±25 MHz. The other filter,

ZF-F1, was the low-frequency filter and had a theoretical central frequency of 150

MHz ±25 MHz. The HF-F1 filter was examined first using a constant amplitude

of 5 dBm. The frequency range started from 2.25 GHz as this was the minimum

frequency where a signal was detected on the power meter. The frequency was then

increased by 0.01 GHz until 2.45 GHz and the corresponding reading and range was

recorded from the power meter for each frequency. An uncertainty of ±0.1 dBm was
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applied to each recorded value in order to account for human error in reading the

value on the power meter.

A similar process was then conductor for filter ZF-F1, however this time the frequency

range first detected a signal around 100 MHz so the frequency range was started at

100 MHz and stopped at 200 MHz. The frequency was increased by steps of 5 MHz

and the corresponding reading and range was recorded from the power meter for each

frequency. Once again an uncertainty of ± 0.1 dBm was applied to each recorded

value in order to account for human error in reading the value on the power meter.

It is also important to note that in both parts of this exercise, any loose connections

could have increased the error on the readings obtained however as no evidence for

such was observed, this was considered to be insignificant. A more thorough analysis

(outside of the scope of this report) could calculate the affect of such loose connections

and the probability that it would significantly affect the measured uncertainty.

From the measured values, the output frequencies were calculated which once plot-

ted against frequency resulted in Fig. 7 for HF-F1 and Fig. 8 for ZF-F1. Since the

resolution of our spectrum is not extremely fine, an ideal solution would have been to

fit a bandpass filter to the current data to determine the shape of the full frequency

response. This could in turn be used to determine the -3 dBm cut-off by subtracting

3 dBm from the filter value. However, creating such fits with Python packages such

as scipy.signal.butter turns out to be not at all trivial and therefore a more

simple approach was used. The approach used was to take an average of the 7 data

points with the largest output power and subtract 3 dBm from this average power.

This resulted in a -3 dBm cut-off value of −0.671 ± 0.037 dBm, which corresponds

to half the drop of maximum power in Watts.

For the measured values using ZF-F1, one can see from Fig. 8 that the full spectrum

was recorded once again. Once again here, rather than fitting a bandpass filter, it

was decided to take an average of the 9 data points with the largest output power

and subtract 3 dBm from this average power. The result was a -3 dBm cut-off value
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Figure 7: Frequency response for the

HF-F1 filter. Input signal power was of

5 dBm, the average of the maximum sig-

nal power was of 2.329 ± 0.037, and 3

dBm below the maximum output power

was of -0.671 ± 0.037. Uncertainties of

±0.1 dBm on all points are present, how-

ever they are too small to be visible.

Figure 8: Frequency response for the

HF-F1 filter. Input signal power was of

5 dBm, the average of the maximum sig-

nal power was of 2.028 ± 0.037, and 3

dBm below the maximum output power

was of -0.971 ± 0.037. Uncertainties of

±0.1 dBm on all points are present, how-

ever they are too small to be visible.
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of −0.971± 0.037 dBm which once again corresponds to half the drop of maximum

power in Watts.

In both filters, the top 7 highest values of power were chosen to be used as the average

maximum power. However this choice was completely arbitrary and the points were

simply chosen because they were the highest values in a row which did not vary by

more than 0.1 dBm. A more scientific justification could perhaps have been made,

especially by using a bandpass filter fit, however in the case of this report it was

justified that our method would produce a accurate enough results. In further work,

a better justification for which points to use as the average of the maximum power

could be made.

As there was no calibration steps for the instruments used in the lab, it is also possible

that improper calibration has affected the results. Perhaps it would be important to

perform calibrations in the future in order to rule out any systematic uncertainties.

The two values for the average maximum power appear consistent with values one

would expect. Since for any RF device, the signal will have undergone some atten-

uation, the output power should be lower than the input power. This loss can then

be measured by the insertion loss which is the ratio of the output signal to the input

signal [1] and is calculated according to,

I.L. = 10 log10

[
Pout

Pin

]
. (5)

The insertion loss values for each filter are shown in Tab. 2. These values should

always have a negative result (hence the “loss” term) as long as the output power is

smaller than the input power. However, when expressing insertion loss in practice, it

is common place to use the absolute value of the obtained negative result [16], which

is why the values determined in Tab. 2 are positive.

Typically, the adjacent-band rejection is calculated as the frequency where the signal

drops below the maximum signal by 60 dBm [26]. However in both of the filters,

the powers are not probed to such low and high frequencies, and such low powers

were not even detected by the power meter. Therefore rather than use the value
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of 60 dBm, the lowest power values of the frequency spectrum shape were chosen,

which means that the adjacent-band rejection will essentially be the entire frequency

bandwidth. The lowest frequency and the highest frequency were then estimated

from the shape of the frequency spectrum, and the difference gave the adjacent-band

rejection. This was then calculated for both filters and displayed in Tab 2. As the

upper and lower frequencies are visual approximations of the actual bandpass filter

fit shape, an uncertainty of ±10 MHz was applied to the upper and lower frequency

values. Although our values are good approximations, in further studies, it would

be important to acquire more sensitive instruments, which can measure powers of

60 dBm below the maximum in order to determine a proper value of adjacent-band

rejection.

The bandwidth of the filters correspond to the edges of the -3 dBm cut-off seen in

Fig. 7 and Fig. 8. In other words it includes the frequencies where the output power

is lower than maximum output power by 3 dBm. The bandwidth values for both

filters are given in Tab. 2, because a bandpass filter was not applied, these values

were mostly decided as a visual approximation, therefore an uncertainty of ±10 MHz

was applied to each measured frequency.

Filter
Center

Frequency

Maximum

Output Power [dBm]

Insertion

Loss [dBm]

Adjacent-band

Rejection [MHz]
Bandwidth [MHz]

HF-V1 2.3 ± 0.025 GHz 2.329 ± 0.037 3.319 ± 0.069 222 ± 14.1 105 ± 14.1

HF-V2 150 ± 25 MHz 2.028 ± 0.037 3.918 ± 0.079 92 ± 14.1 63.5 ± 14.1

Table 2: Parameters of the two amplifiers used during this experiment. The only

measured values are the gain, the other values were provided by the lab manual [24].

No uncertainties were provided on the numbers given by the lab manual, which is

why there are only uncertainties on the measured gain values.

3.1.3 Exercise 1.3

In this exercise the the bandpass of the HF-F1 filter was supposed to be displayed

on the oscilloscope and the central frequency of the filter was supposed to be var-
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ied. Unfortunately, since the oscilloscope was not accurate enough, the lab tutor

instructed us not to carry out this exercise. Therefore it will be skipped during this

report.

3.1.4 Exercise 1.4

In this exercise, a mixer was used along with an RF signal and a local-oscillator

(LO) in order to verify that the output power of the mixer depends linearly on the

RF signal. The mixer inputs were connected to the RF signal and the LO and the

output was connected to the power meter. The RF signal was set to 2.3 GHz with an

amplitude of 0 dBm and the LO was set in continuous wave mode and tuned to 2.45

GHz with an amplitude of 12 dBm. The input power was then started at -7 dBm

and increased by steps of 1 dBm all the way to 15 dBm. The reading and range were

both recorded, and once added together resulted in a value for the output power.

An uncertainty of ±0.1 dBm was applied to each recorded value in order to account

for human error in reading the value on the power meter.

The input power was then plotted against the output power which resulted in Fig. 9.

A first glance at the points shows a clear non-linear behaviour at the edges however,

there appears to be linear behaviour near the center. Therefore a linear fit (of the

form y = mx+ b) was calculated for both the entire set of data points and points 3

to 14 (counting from left to right) as those points appeared to show the most linear

behaviour. The results of these fits can be found in Tab. 3. Although typically it is

best to use only the raw data, selected data points could have been justified in this

situation as there might be systematics which play a role at the lower and higher

input powers which cause the behaviour to no longer be linear. This is specifically

known at higher powers, such as what was shown in exercise 1.1, and therefore it is

possible that similar behaviour was seen here. Therefore calculations were performed

on both the entire data and selected data in order to cover both the possibilities that

all the data is valid, or that some of the data is bad.
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Figure 9: Output power as a function of input power for the mixer. Uncertainties of

±0.1 dBm on all points are present, however they are too small to be visible.

The conversion loss could then be calculated in dB by using the ratio of the RF input

power to the IF single-sideband output power [6]. However, as we are working in

dBm, the conversion loss is equivalent to the difference between the RF input power

and the IF output power [8]. The result could then be acquired by looking at Fig.

9 and identifying where the output power starts to saturate. The absolute value for

the two values of conversion loss were then included in Tab. 3, taking into account

that the input power was 0 dBm.

Fit Slope [ ] y-Intercept [dBm] Conversion Loss [dBm]

Entire Fit 1.001 ± 0.062 -12.381 ± 0.486 -1.2 ± 0.1

Selected Fit 1.121 ± 0.030 -11.289 ± 0.114 -3.2 ± 0.1

Table 3: Fit parameters of the linear fits of input power vs output power using the

mixer as well as the calculated results for 1-dBm compression point and conversion

loss. The entire fit is the fit applied to all data points whereas the selected fit is the

fit applied to only the 12 points which show the most linear behaviour.
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It is important to note that for this exercise, the results obtained from Fig. 9 needs

to be taken with scrutiny. The behaviour observed was much less linear than what

one would expect, and therefore there could be some systematic error which was

not accounted for during this part of the lab. The values for the fit however still

seem reasonable, and therefore the end result for the conversion loss should still be

accurate, however the actual uncertainty most probably should be higher than the

measured uncertainty on this value.

3.2 Measurements with a Complete Receiver

3.2.1 Exercise 1.5

In this part of the lab, we move from our simplified setup, to using that actual

superheterodyne receiver. This receiver was constructed using the same types of

components as in the previous exercises and comes completely pre-assembled so no

parts needed to be changed. Calibration of the receiver was done using two well

defined input powers. The input noise signal was provided by a matched 50 Ω

resister (Load) and was first kept at room temperate. After the first measurements,

at room temperature the laod was then cooled by liquid nitrogen at a temperature

of 77 K.

The receiver was then connected to the signal generator and a frequency of 1.45

GHz was selected and an input power of 0 dBm was set. The hot-cold calibration

measurements were then recorded on a PC connected to the receiver using the Gqrx

SDR software [21]. This was first done by starting the recording at room temperature

for a 30 seconds and then dipping the resistor into the liquid nitrogen. The recording

continued until 60 seconds after the bubbling stopped and the data was saved. The

provided hotcold-power.py script was then run on the raw data, which output the

average power of each scan on the screen and in the end produce a usable text file.

The receiver temperature was then determined in two ways. The first way was to

determine the temperature using Eq. 6.
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Figure 10: Output power vs. time for the hot-cold calibration as recorded by the

Gqrx SDR software. The mean values of the hot power and cold power are also

displayed.

Trec, 1 = Pcold
Thot − Tcold

Phot − Pcold

− Tcold (6)

The room temperature was taken as 21.5±0.2 ◦C and then converted to Kelvin. The

temperature of the liquid nitrogen was known to be of 77 K, however since it was

interacting with the environment and was not in a closed system, an uncertainty of±1

K was assumed on Tcold. The values of output and input power were then converted

to mili-Watt before calculating Trec, 1. Phot was calculated by taking the average of

the output powers at room temperature, whereas Pcold was calculated by taking the

average of the output powers after the system reached equilibrium. The calculations

then resulted in values of Phot = 0.124± 0.065 mW and Pcold = 0.077± 0.040 mW,

where the uncertainties were calculated from the uncertainty on the calculation of

the mean (max−min/2). The result was calculated as,

Trec, 1 = 279.576± 607.941 K. (7)

Note that it appears that the uncertainty was most likely overestimated. This could
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have been a result from the calculation of the uncertainty of the mean which might

require a more sophisticated uncertainty calculation such as using, uncertainty =

t · s/
√
N , where s is the standard deviation, t is the student t-factor and N is the

number of data points [25].

The value for Trec, 2 was then calculated graphically by using the hot-cold calibration

curve. This curve (shown in Fig. 11) was created by plotting a point for the mean

hot temperature and a point for the mean cold temperature and fitting a straight line

of the form (y = mx + b). Using the python package Numpy.polyfit [9] the slope

was determined as being 4676.32±108.5 K/mW and the y-intercept was determined

as −283.75 ± 0.023 K. The absolute value of the y-intercept was then taken as the

receiver temperature, and therefore,

Trec, 2 = 283.75± 0.023 K. (8)

When comparing both values, one can see that they are relatively close and therefore

any difference was most likely due to imprecision in the calculations or recording of

the data. The second method has a much lower uncertainty which shows that is

can probably be trusted more than the first value. However, while the calculation

method yielded a result with a likely overestimated uncertainty, it is possible that

the graphical method yielded an underestimated uncertainty as the uncertainty is

very low. Further study on the viability of these uncertainties could be conducted

in order to further improve results.

3.2.2 Exercise 1.6

Now that the hot-cold calibration had taken place, we were then ready to determine

the noise temperature of an unknown source. To do this, the resistor was replaced

by the noise diode and the measurements were once again recorded using the PC

and 3 recordings of 30 seconds each were taken. The LO was set to 1.450 GHz and

a constant amplitude of 0 dBm was set. The calibration was then used to determine
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Figure 11: Hot-cold calibration curve. The mean of the hot data has a value of

293± 0.2 K at a power of 0.123± 0.064 mW, and the cold data has a value of 77± 1

K at a power of 0.077± 0.040 mW. Uncertainties on all points are present, however

they are too small to be visible.

the noise temperature.

To do this, the equation of the for y = mx + b was used, where the values of m

and b were determined during the calibration, and the value of x used was the mean

value of all three noise measurements which was calculated to be x = −1.876±0.015

dBm (shown in Fig. 12). However, once this value was plugged into the calibration

equation, the resulting value was of, y = −9061.026± 215.386 K, and therefore after

taking the absolute value the result was T = −9061.026± 215.386 K.

As one may note, the obtained value to T is extremely high compared to the room

temperature. This result was most likely just an artifact from the noise diode because

since it is not a blackbody, the value of T will not represent it’s actual temperature.

Since the diode is just producing noise, it could be producing values which lead

to a determination of a much higher than a room temperature value. In such a
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Figure 12: Power vs. time for all three recordings. The mean power of all three

recordings is shown in black and was calculated as being −1.876 ± 0.015. Unfor-

tunately no uncertainties were provided by the recording software and therefore no

uncertainties are present in this graph. Uncertainties could have been estimated

however as they are in reality most likely extremely small, any guessed uncertainty

would have been overestimated and would not be accurate. Also note that the lines

connecting each of the points are not physical values but are present to help visualize

a particular recording’s trend.

scenario, a high value of T such as the one determined could even be expected. A

possible source of error however was that the calibration of the instruments was not

completely accurate. Any small error in calibration could result in a value which is

quite wrong.

3.2.3 Exercise 1.7

The next task was to simulate atmospheric attenuation. To do this, the variable

attenuators were connected in series and inserted between the noise diode and the

receiver. The output power was then measured as a function of the variable atten-
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uation from 0 dB to 30 dB in steps of 3. Once the attenuation was changes, it was

important to wait for the power level to be stable as there was a short delay between

when the attenuation was set and when it appeared on the screen. For each record-

ing, an integration time of 5 seconds was used. As in previous steps, the results were

recorded by the PC after which the hotcold-power.py program was run and the

results were calibrated and then plotted as seen in Fig. 13.

Figure 13: Average power versus the attenuation. Notice the decreasing trend in

power as attenuation is increased. Uncertainties on all points are present, however

some are too small to be visible.

The results of this task were able to be described by the radiation transport equations,

TA = Tsys − Trec =
1

L
Tb +

(
1− 1

L

)
Tatm (9)

TA = e−τTb +
(
1− e−τ

)
Tatm (10)

Where L is the attenuation, therefore 1
L
is the transmission. Tb is the brightness

temperature and Tatm is the atmospheric temperature. Eqn. 10 is specifically the

solution to the transport equation for a homogeneous absorber at constant temper-

ature Tatm, where τ is the optical depth [24]. This means that as long at TA and

Tatm are known, it is possible to calculate the transmission and determine the true
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intensity of a source.

One may see that in Fig. 13, the average power decreases with an increase in atten-

uation. One may even notice a decreasing trend which resembles the e−τ behaviour

expected from Eqn. 10. It is important to remark however that the average power

is extremely low. Even though we are not measuring a blackbody and therefore do

not expect the temperatures to be the real temperatures, such extremely high values

could potentially be of concern. This once again points to a problem in the calibra-

tion process where the calibration of the instruments might not have been accurate

enough and could be affecting the results. When the calibration is not applied, the

average power ranges between -4 dBm and -9 dBm, which appear to be more reason-

able however the calibration step is important to the scientific process and therefore

is was applied even if there are chances that it could be wrong. In case there is a

problem with the calibration, the same Fig. as Fig. 13 except with uncalibrated

values is shown in the appendix as Fig. 27. This calibration should be investigated

in order to improve the results.

3.2.4 Exercise 1.8

After the attenuation measurement, the next tasks aimed to introduce the students

to radio spectroscopy. To do this, a spectrum analyzer was used as a spectroscopic

backend and the noise diode and variable attenuators from the previous exercise were

replaced by an antenna. This spectrum analyzer allows the bandpass of the receiver

to be displayed along with some “emission lines” which are man-made [24]. Man

made emission lines such as those which could be seen outside the bandpass can by

quite disturbing during astronomical measurement where they would typically be

masked if possible.

For this exercise the LO was set to a frequency of 1.45 GHz (CW-mode) and a power

of -10 dBm. The signal generator was then set to 1.6 GHz at a power of 0 dBm, the

mixer then mixes the two frequencies and an IF frequency was detected at 150 MHz
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Figure 14: Frequency analyser response.

The x-axis is the frequency and the y-

axis is the signal amplitude. Signal of the

produced “emission line” detected at 150

MHz.

Figure 15: Frequency analyser response

showing the produced “emission line” de-

tected at 150 MHz and a harmonic at a

higher frequency. Axis are the same as

Fig. 14

(Fig. 14). This frequency was also easily determined theoretically,

fLO − fRF = 1.6 GHz− 1.45 GHz = 0.150 GHz = 150 MHz. (11)

If the central frequency of the LO was shifted, one could then make out another peak

in the spectrum (shown in Fig. 15). This second peak was a harmonic which was

present due to imperfections in the mixer. Several other similar peaks should exist

periodically at further frequencies on both sides of the main signal, however their

amplitudes will be damped compared to the main “emission line”.

3.2.5 Exercise 1.9

The second radio spectroscopy exercise requires the receiver output to be connected

to the SDRplay receiver. The signal was then recorded using different recording

length times. Specifically, integration times of 5 s, 15 s, 30 s, 45s, 60s, 75s, 90s, 110s,
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120s, and 150s were taken with an uncertainty of ±1 s on all to account for human

error when stopping the integration. The same LO and signal generator settings

were used as in Exercise 1.8. The average power (noise) was then plotted for each

recording time and is displayed in Fig. 16. A linear fit, of the form y = mx+ b was

then applied to the data points, which had a slope of m = −0.003 ± 0.020 dBm/s

and a y-intercept of b = −2.502± 1.629 dBm.

Figure 16: Average power for each recorded time. Notice the small decreasing trend

in power as recording time is increased. Uncertainties on all points are present,

however some are too small to be visible.

Looking at Fig. 16, from the slope of the linear fit there appears to be an extremely

small negative trend the average power as the recording time is increased. This

however is contrary to what would be expected as seen from Eqn 12, where the

signal should increase, therefore the noise should decrease with longer integration

times, τ [10].

SNR =
TA

TSys

(∆ν · τ)1/2 (12)

This means that the slope of the linear fit in Fig. 16 should have been increasing

and in our case it was not. In general however, the recorded values did not show

a very significant trend since the value of the slope was so small, and this could
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therefore identify that perhaps the measurements made were not precise enough to

measure the expected behaviour. The measurement of bad data would explain the

unexpected behaviour and the fact that the trend was not significant.

The room mean square (RMS) values were then calculated for each value using the

equation,

∆T =
TSys√
∆ν · τ

, (13)

which was given in the lab manual [24]. Where ∆T is the RMS value, TSys is the

system temperature which was previously calibrated and determined to be 283.75±
0.023 K, ∆ν is the bandwidth and τ is the integration time. In order to use this

equation, a bandwidth of the known frequencies was needed, however no bandwidth

was recorded in previous steps and therefore a value had to be estimated. Such a

value could have perhaps been estimated if more information was given, for example

by using Eqn. 14 if we had been given the number of samples N [10], or Eqn. 15 if the

resonant frequency νc had been calculated and the quality factor Q was determined

[15].

∆ν =
1

2

N

τ
(14)

∆ν =
νc
Q

(15)

Unfortunately since the values for the above equation were not provided or deter-

mined, it was therefore decided that at a frequency of 150 MHz, it was reasonable

to estimate a bandwidth of ∆ν = 1± 0.5 MHz. This value was then converted to Hz

in Eqn. 13 and the radiometer equation was then used to plot the RMS noise versus

the recorded time (shown in Fig. 17). A linear fit, of the form y = mx+ b was then

applied to the data points, which had a slope of m = −0.001 ± 0.0002 K/s and a

y-intercept of b = 0.084± 0.013 K.

From Fig. 17, the linear fit demonstrates a decrease in the RMS noise as the recording

time was increased. This trend was expected since in Eqn. 13, the integration time

τ is in the denominator, and therefore one would expect that as the integration time

increased, the RMS noise should decrease.
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Figure 17: RMS noise for each recorded time. Notice the decreasing trend in power

as recording time is increased. Uncertainties on all points are present, however some

are too small to be visible.

The next step for this section was to calculate the integrated line flux. This was

done after running the hotcold-power.py program on each measurement and the

line-detect.py code was run for 15s and 30s. For a more comprehensive analysis,

this last script could have been run on all measurements of different times, however

due to time restrictions the tutors instructed to only use the measurements of 15s

(Fig. 18) and 30s (Fig. 19).

The integrated line flux was then calculated for both recording by calculating the

area under the signal. This was done using two different methods with the Python

packages Scipy.integrate.simps and Scipy.integrate.trapz [11]. The two sep-

arate methods were used as a way to compare different integration methods and see if

our final results were consistent. Performing the integral of an intensity will yield the

net power radiated, Pnet [17], therefore the integrated line flux is equivalent to Pnet

and therefore our resulting values will have units of Watts. For the 15 second mea-

surement, the Scipy.integrate.simps method yielded a value of Pnet, 15 = 0.204

W, whereas the Scipy.integrate.trapz method yielded a value of Pnet, 15 = 0.200
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Figure 18: Frequency spectrum for the

signal recorded during 15 seconds.

Figure 19: Frequency spectrum for the

signal recorded during 30 seconds.

W. For the 30 second measurement, the Scipy.integrate.simps method yielded a

value of Pnet, 30 = 0.231 W, whereas the Scipy.integrate.trapz method yielded a

value of Pnet, 30 = 0.225 W. In both cases these values were very close to each other

and therefore the integral was most likely correctly calculated in both methods. For

both integration methods, a linear fit was applied to examine the behaviour of the

integrated line flux, and are present in the Appendix as Fig 28 and Fig. 29. In both

the integration methods, a positive linear trend is noticed however since there are

unfortunately since there are only two data points, this trend carries no statistical

significance.

Unfortunately no uncertainty was provided by the recording software, in future work

it would be important to calculate an uncertainty on both values. It would be espe-

cially important in a situation such as this one, as both integration methods probably

produce results which lie within the other’s uncertainty but unfortunately this can-

not be known for certain in this report. In future reports, it would also be important

to take measurements of more recording times, such as in the previous part, in order

to further analyze the trend of the integrated line flux as time is increased.

The last step of this section was to estimate the temperature of the source, assuming

that the line comes from a cloud in thermal equilibrium. In such a situation, where
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hν << kT we were able to use the Rayleigh–Jeans law to calculate the temperature

of that source according to Eqn. 16.

Tb =
Iνc

2

2kBν2
(16)

Where Iν is the intensity of the line in Hz, c is the speed of light, kB = 1.380649 ·
10−23 m2·kg·s−2·K−1 is the Boltzmann constant and ν is the frequency. In both the

recordings, the frequency peak was of ν = 150 MHz. For the 15 second recording,

Iν = 0.380 W/m2, and for the 30 second recording, Iν = 0.167 W/m2. Plugging the

values into the equation results in a value for the 15 second recording as Tb, 15 =

5.492 · 1022 K and a value for the 30 second recording of Tb = 2.421 · 1022 K.

Here it is important to note that these brightness temperature values are extremely

high. This is because the values are not physical temperatures because the brightness

temperature equation only gives the actual physical temperature of an object when

they can be considered as a blackbody. As our experiment is not even actually

observing a physical object, it is certainly not a blackbody.

Once again it is important to consider here that no uncertainty values were provided

with the data and therefore the resulting values do not contain any uncertainties.

For a properly thorough report, it would be important to provide uncertainties on

all measurements and results.

3.2.6 Exercise 1.10

In this final exercise, the goal was to determine the possible frequencies of the LO

when observing at 1.8 GHz and to test the setup of the signal generator. The second

task was determining the emitting frequency of a mobile phone. This exercise how-

ever had to be conducted theoretically rather than practically as the tutor suspected

that this exercise might be causing problems with the superheterodyne receiver and

causing it to break.
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In order to observe a specific frequency we re-arrange Eqn. 11 to get,

fIF = fLO − fRF

fLO = fRF ± fIF,
(17)

Since we have fIF = 150 MHz,

fLO = 1800MHz± 150MHz, (18)

So in order to observe the frequency of 1.8 GHz, the LO should be set to 1.65 GHz

or 1.95 GHz.

The emitting frequency of a mobile phone could then be theoretically calculated.

Practically, this would have been done by starting a phone call and pointing the

phone towards the antenna. The signal would then be seen on the frequency analyzer.

Once could then detect an uplink frequency and a downlink frequency on the LO,

after which one could add 150 MHz to find the actual frequency of the phone. If this

exercise were to have been performed practically and correctly, one would expect to

have a resulting frequency value either between 800-900 MHz or between 1800-1950

MHz depending on the type of phone that was used [4].

4 Setting Up a Twin Radio Interferometer

In this part of the experiment, a twin radio interferometer is used to record radio

emission from the Sun and produce a radio image of the Sun. The interferometer

consists of two identical radio dishes 90cm in diameter connected together through

a correlator. The signals coming from the individual dished are correlated in the

correlator whose task is to multiply the two signals also known as ’cross-correlation’

to give a interference/fringe pattern with the fringe width being comparable to the

angular resolution of the system which depends on the separation between the two

dishes. However, we were not able to perform this task due to bad weather con-

ditions and hence, had to use data from the previous experiment. All bits of data
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analysis performed in this section is based upon the data received from the previous

experiment.

The antennas record the raw data in the form of power received as a function of

time. This data is very noisy and a noise reduction algorithm needs to be applied

to get a RFI mitigated signal. This is done by using the python script given in the

manual and the raw data plots for the two methods for Antenna A can be found in

the Appendix 6

4.1 Still Scan

In this observation, the antenna are kept at a fixed position and the Sun is allowed

to pass through the field of view of the telescope system. A schematic view of how

this is done can be seen in 20.

Figure 20: Schematic View of the Still Scan Method (credits:[24])

The raw data from the still scan was passed through the given python script to

perform a noise reduction and certain cutoffs in the time domain were applied to

the dataset such that we only record the signals when the Sun just passes over the
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antenna system. The intensity vs time plots generated after following these steps for

data from both antennae can be seen in Fig. 21.

(a) Noise reduced data from Antenna A (b) Noise reduced data from Antenna B

Figure 21: Noise Reduced data from the Still Scan Method



A7; S262: Setting up a Radio-Astronomical Receiver/ Setting up a Radio
Interferometer 41

4.2 Declination Scan

In this method, the RA of the telescopes was fixed while their declination was changed

such that the interferometer scanned the entire Sun thus able to produce an image.

The visualization of this can be seen in the schematic diagram shown in Fig. 22.

Figure 22: Schematic View of the Declination Scan Method (credits:[24])

It can be verified that the procedure was performed correctly by plotting the telescope

Declination as a function of the Right Ascension. This is shown in Fig. 23

Figure 23: RA and Dec plot of the telescope

After recording the declination scan data, a similar noise reduction technique was

applied to it as that for the Still Scan and the noise reduced dynamic plots were
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produced for both the antennas. These can be seen in Fig. 24. One thing to

notice in these plots is the regularly spaced peaks unlike the still scan since the

telescope declination was being changed during the observation. Thus, we expect

these dynamic plots to precisely follow the telescope movement.

(a) Noise reduced data from Antenna A (b) Noise reduced data from Antenna B

Figure 24: Noise Reduced data from the Declination Scan Method

After eliminating most of the noise from the observation, the last section of the

provided python script was used to produce an Image of the Sun. This code produces

three images, two images from the individual antenna and a final interferometric

image from the interferometer. These results can be seen in Figs. 25 and 26
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(a) Image created from

Antenna A

(b) Image created from

Antenna B

Figure 25: Images of the Radio Sun from the two individual Radio Dishes

Figure 26: Radio Sun as imaged by the interferometer

It can be seen in the above images that the results produced from the individual

antennas have a poor angular resolution. Moreover, the image produced by Antenna

A is all over the place which shows that the observing run was not carried out very

precisely for that antenna. However, when me correlate the data from the two dishes,



A7; S262: Setting up a Radio-Astronomical Receiver/ Setting up a Radio
Interferometer 44

we get interferometric fringes and it can be seen from the interferometric images that

this gives a much higher resolution. If the baseline between the antennas were to be

increased, it would give more number of interferometric fringes with smaller spacings

and hence a more better image resolution.

From these observations, we can try to find the angular extent of the Sun. In this

part, we used the interferometric image of the Sun and found out its angular diam-

eter to be roughly ∼ 1.8◦. In the optical regime, the angular diameter of the Sun

is about 0.53◦ [14]. This is the extent of the solar photosphere. However, from our

results, it can be seen that the radio Sun is almost three times bigger than the Sun.

This is because the radio emission from the Sun extends up to the solar corona. Our

instrument is tuned to observe the Sun in the X-band (8-12 GHz). Hence, the radio

extent of the Sun we see is purely due to the thermal emission acting as a black body

[12].

From the angular diameter, the actual extent of the Sun can be calculated using the

following relation:

θ =
Diameter of the Sun

Distance between the Sun and Earth
(19)

In this formula, the current average distance to the Sun was assumed to be 148.03

million kilometers [reference]. From this equation, the diameter of the Sun was found

out to be Dsun = 266.45× 109m. This is the diameter of the radio Sun and varies as

a function of frequency and solar activity [2].

https://theskylive.com/how-far-is-sun


A7; S262: Setting up a Radio-Astronomical Receiver/ Setting up a Radio
Interferometer 45

5 Conclusion

5.1 Part I: Setting Up a Radio-Astronomical Receiver

5.1.1 Components of a Superheterodyne Receiver

The first tasks of this lab were to study all of the different components of the su-

perheterodyne receiver. The gain of two amplifiers (high power and low power) were

measured by fitting a straight line to their linear response. A high power filter as

well as a low power filter were then studied by determining their bandwidths along

with their maximum output power, insertion loss and adjacent-band rejections. The

mixer was then studied to verify that its output power depended linearly on the RF

signal and a conversion loss was calculated.

5.1.2 Components of a Superheterodyne Receiver

In this step of the lab, the simplified setup was replaced by an actual superheterodyne

receiver. Here a hot-cold calibration was first performed and a system temperature

temperature was determined using two separate methods. From this information,

the noise diode temperature was measured and finally atmospheric attenuation was

simulated by connecting two attenuators in series.

5.1.3 Radio Spectroscopy

The first radio spectroscopy exercise was to study the output of the receiver using

a frequency analyser. The part involved using an SDR to study the response of the

receiver, where average power and rms values were investigated according to different

integration times.
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5.1.4 Further Discussion

All uncertainties were calculated according to Gaussian error propagation given in

Eq. 20 and Eq. 21. It is important to note however that there were many flaws

with how the uncertanties were calculated in this report, the most important of

which were that many of the results produced by the instruments did not produce

uncertainties and therefore most of the uncertainty values had to be guessed to the

best of our knowledge. In further work it would be important to take a deeper look

at the uncertainties and create a reasonable estimate for all values in this report.

There were also many parts of this lab which were either not functioning or had

serious imprecision. In order to improve the lab, it would be important to acquire

better instruments which can work to a higher precision.

5.2 Part II: Twin Radio Interferometer

In this part, raw data was obtained from interferometric observation of the Sun in

the X-Band. The analysis done in this part is limited by the raw data which was

provided by the tutors since bad weather conditions did not allow to take any real

time observations. Moreover, the provided raw data was first cleaned by using a noise

reduction script provided by the tutors. Then, the two different scans were used for

different analysis purposes. The still scan gave a plot where data cuts were given to

constrain the time when the Sun enters the telescope field of view and exits it giving

smooth rise and fall in the flux levels as the observations proceed. In the declination

scan, an image of the Sun was produced for the noise reduced data. The image from

individual antennas and the interferometric image were produced in this analysis.

From the images we see, we conclude that the performance of Antenna A was not

optimum during the course of the observations. Possible reasons can be inaccurate

tracking or some defects in the receiver backend for the antenna. The interferometric

image gives a better resolution which allowed us to constrain the solar diameter to

266.45 million kilometers. As a comparison, it is not possible to find a fixed value for
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this diameter in the literature as the radio Sun has a high variability and the size also

varies as a function of the observing frequency. However, the calculated diameter

does conclude that the diameter of the radio Sun is larger than in the optical regime.
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6 Appendix

Figure 27: Uncalibrated average power versus the attenuation. Notice the decreasing

trend in power as attenuation is increased. Uncertainties on all points are present,

however some are too small to be visible.

The error propagation for an addition or subtraction is given by,

δQ =

√
(δa)2 + (δb)2 + · · ·+ (δc)2 + (δx)2 + (δy)2 + · · ·+ (δz)2. (20)

Standard Gaussian error propagation is given by the general form of Summation in

Quadrature,

δf (x, y, ...) =

√(
∂f

∂x
δx

)2

+

(
∂f

∂y
δy

)2

+ · · · (21)
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Figure 28: Linear fit of the form y =

mx + b to examine the behaviour of the

integrated line flux using the Simps inte-

gration method. Slope was of m=0.002

and y-intercept was of b=0.177.

Figure 29: Linear fit of the form y =

mx + b to examine the behaviour of the

integrated line flux using the Trapz in-

tegration method, Slope was of m=0.002

and y-intercept was of b=0.173.

Figure 30: Raw Data from Declination Scan for Antenna A
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Figure 31: Raw Data from Still Scan for Antenna A
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